Физики из МФТИ и ИТМО, а также их коллеги из Швеции, Финляндии и США предложили способ, с помощью которого можно повысить эффективность беспроводной передачи энергии на дальние расстояния, и проверили его с помощью численного моделирования и прямых экспериментов. В новом способе на принимающую антенну подается сигнал, параметры которого согласованы с параметрами падающего излучения — в результате сигналы интерферируют, и доля переданной в электрическую цепь энергии растет. Таким образом ученым удалось «настроить» слабо «расстроенные» антенны и практически на порядок увеличить эффективность приема сильно «расстроенных» антенн, которые в обычных условиях поглощают около процента энергии падающей волны. Статья опубликована в Physical Review Letters, кратко о ней сообщает Physics.
Впервые идею беспроводной зарядки предложил в конце XIX века Никола Тесла — с помощью системы катушек ему удалось зажечь люминесцентную лампу и лампу накаливания, не связанные с генератором проводами и стоящими от него на некотором отдалении. Для этого он использовал принцип электромагнитной индукции. Заключается этот принцип в следующем. Когда через катушку — цилиндр, обмотанный проводом, — пропускают переменный электрический ток, внутри и снаружи от нее возникает магнитное поле, напряженность которого меняется со временем. Если поместить в это магнитное поле вторую катушку, в силу закона Фарадея в ней наведется электрический ток, который можно использовать для питания полезной нагрузки.
Схема работы катушек индуктивности. Пунктирными линиями отмечена напряженность магнитного поля, буквой i обозначен ток, протекающий через катушки, а буквой u — падение напряжений
Вообще говоря, беспроводная передача энергии сейчас широко используется, только мы этого не замечаем. Трансформаторы, которые повышают или понижают напряженность электрического тока, состоят именно из таких несвязанных друг с другом катушек. Кроме того, в последнее время технологию, аналогичную технологии Теслы, стали использовать в беспроводных зарядных устройствах — достаточно положить телефон на специальный коврик или поставить электромобиль над зарядной станцией, чтобы аккумулятор устройства начал заряжаться.
К сожалению, подобный способ беспроводной передачи энергии имеет ряд серьезных недостатков, самый главный из которых — низкое дальнодействие. Дело в том, что напряженность переменного магнитного поля, создаваемого катушкой, падает обратно пропорционально расстоянию до нее, а потому вторая катушка должна стоять достаточно близко, чтобы в ней навелся сколько-нибудь заметный электрический ток. Именно поэтому в трансформаторах используют специальные сердечники (магнитопроводы), чтобы предотвратить рассеивание магнитного потока. По той же причине дальность беспроводной зарядки не превышает трех-пяти сантиметров, и телефон нужно класть на специальный коврик. Конечно, «дальнобойность» можно повысить, если увеличить размеры одной из катушек или силу пропускаемого через нее тока — однако здесь выходит на первый план другая проблема, связанная с вредным воздействием мощного электромагнитного поля на человека. Большинство стран устанавливает допустимые границы мощности — например, в России плотность излучения сотовых станций ограничена десятью микроваттами на квадратный сантиметр.
К счастью, существуют альтернативные способы беспроводной передачи энергии. Для ограничения области распространения излучения в таких способах используются специально сконструированные антенны, одна из которых направленно излучает электромагнитные волны, а вторая поглощает и передает их энергию в электрическую цепь. Очевидно, что существенно улучшить излучающую антенну нельзя, поскольку ее работа сводится только к генерации волн. А вот простор для улучшений принимающей антенны гораздо шире. Основная проблема этого способа заключается в том, что принимающая антенна не поглощает все падающее на нее излучение полностью, а также частично отражает его обратно.
Антенну в общем случае можно описать двумя параметрами — характерным временем переизлучения свободных электромагнитных волн обратно в пространство τF и характерным временем передачи энергии в электрическую цепь τw. Характерное время — это время, в течение которого амплитуда волны уменьшается в заданное число раз (обычно в качестве меры выбирают основание натурального логарифма e). В зависимости от соотношения между этими временами доля «выкачанной» из падающей волны энергии будет различной, достигая максимума при условии τF = τw. Если время τF меньше времени τw, антенна слишком быстро начинает переизлучать, а в обратном случае она слишком медленно воспринимает падающее излучение. Это равенство называется условием согласования (conjugate matching condition). Обычно антенны стараются изготовить так, чтобы оно выполнялось, но абсолютной точности достигнуть сложно. Кроме того, изначально настроенная антенна может легко «расстроиться» из-за изменении температуры, переотражений сигнала от рельефа и других внешних факторов. Наконец, доля поглощенной энергии зависит от частоты падающей волны — эффективнее всего поглощение происходит на резонансной частоте антенны, а в целом энергетический спектр описывается распределением Лоренца.